大模型算法研發(fā)工程師
350-450元/天你好,感謝在超過80億個(gè)節(jié)點(diǎn)的Graph上與我建立邊,我是Tiger,現(xiàn)在帶領(lǐng)小伙伴們使用最前沿的開源與閉源大模型以及各類相關(guān)技術(shù)進(jìn)行AI商業(yè)化的創(chuàng)新與創(chuàng)業(yè)。以下是我們的一些思考,如果你感興趣,也歡迎和我們深度探討:【重要假設(shè)】首先我們假設(shè)在不遠(yuǎn)的未來,每個(gè)個(gè)體(Customer)都將有自己的AI助手或Agent,我們稱之為CAI;同時(shí)每個(gè)盈利或非盈利組織(Business)也均會(huì)有自己的AI助手或Agent,我們稱之為BAI;在以上兩個(gè)假設(shè)滿足的前提下,我們認(rèn)為,未來B-C、B-B甚至C-C的交互將主要由代表各自利益的AI助手或Agents完成。目前已有研究者提出不同的通信協(xié)議,從最簡(jiǎn)單的MCP到去除NLP層的權(quán)重直接交互。這將極大地增加做決策時(shí)的信息交流和處理的效率,使其從人類現(xiàn)有的最高10bit/s增長(zhǎng)三到五個(gè)數(shù)量級(jí)。不難推理出,決策模型將開始從碳基生物的腦中(NeuralNetwork)轉(zhuǎn)移到硅基生物的權(quán)重(ArtificialNeuralNetwork)中?!炯夹g(shù)角度】我們重點(diǎn)開發(fā)BAI用以與CAI(如Deepseek/GPT/Claude/Gemini/Qwen/豆包/Kimi等)交互。為了實(shí)現(xiàn)這一目標(biāo),我們需要進(jìn)行非結(jié)構(gòu)化信息結(jié)構(gòu)化(KG/GraphRAG/Ontology等)、人類交互方式AI化(MuseTalk/Facefusion/Whisper等)、AI人設(shè)從靜態(tài)轉(zhuǎn)為動(dòng)態(tài)化(如星際穿越中的TARS可動(dòng)態(tài)且量化的調(diào)整幽默度與坦誠(chéng)程度)、計(jì)算量從TestTimeCompute向訓(xùn)練移動(dòng)(GCN/GAT/SFT/RLHF/Post-pretraining等)等多方面的研發(fā)與開發(fā)?!旧虡I(yè)應(yīng)用角度】我們將新突破的AI技術(shù)應(yīng)用到之前老技術(shù)無法覆蓋的場(chǎng)景,從而實(shí)現(xiàn)增量市場(chǎng)覆蓋,而這部分增量市場(chǎng)體量大約是現(xiàn)存全部電商(Amazon|EBay|淘寶|天貓|京東|PDD|美團(tuán)|抖音電商等)體量總和的3到9倍。同時(shí)我們認(rèn)為BAI的成功實(shí)現(xiàn)會(huì)極大的威脅電商或任何中間商的存活,因?yàn)镃AI會(huì)跳過需要抽取傭金的中間商而直接與服務(wù)或物品提供商的BAI對(duì)接,從而為其主人——C端用戶提供性價(jià)比最高的服務(wù)或物品?!続GI角度】我們堅(jiān)定的相信AGI會(huì)在我們的有生之年實(shí)現(xiàn),但是我們認(rèn)為其實(shí)現(xiàn)無法由單一個(gè)體、單一機(jī)構(gòu)或單一組織通過創(chuàng)造單一AI單獨(dú)實(shí)現(xiàn),只有【多種類垂直AI協(xié)作】配合【多學(xué)科、多組織、多國(guó)合作】才能實(shí)現(xiàn)【真.AGI】。而我們第一階段目標(biāo)是管理所有的信息(不只是數(shù)據(jù)),使得信息的產(chǎn)生、合成、運(yùn)輸、收集、存儲(chǔ)、處理、交互等均為AINative,并等待第二階段重要Milestone的到來(我們認(rèn)為會(huì)誕生一種AI原生交互系統(tǒng)IS-ArtificialIntelligentInteractiveSystem從而取代現(xiàn)有PC端和移動(dòng)端OS),屆時(shí)再根據(jù)具體情況調(diào)整我們的研發(fā)戰(zhàn)略與戰(zhàn)術(shù)?!緧徫宦氊?zé)】1.負(fù)責(zé)內(nèi)部新項(xiàng)目prototype的研發(fā);2.閱讀最新的論文,學(xué)習(xí)和應(yīng)用最前沿的技術(shù)/算法/基礎(chǔ)架構(gòu);【崗位要求】1.人工智能或計(jì)算機(jī)科學(xué)或軟件工程類;2.在校成績(jī)前10%及以內(nèi);3.熟練掌握Python;4.熟悉至少一款主流的開源或閉源大模型;5.熱愛人工智能,不懼怕學(xué)習(xí)新技術(shù)?!灸隳塬@得】1.你做的不是"某個(gè)模塊的第37版迭代",而是真正能寫進(jìn)簡(jiǎn)歷的獨(dú)立項(xiàng)目,你不再只是參數(shù)調(diào)試的“螺絲釘”,而是從需求定義、技術(shù)選型到實(shí)驗(yàn)驗(yàn)證的項(xiàng)目主人翁;2.扁平直帶:團(tuán)隊(duì)無上下級(jí)隔閡,技術(shù)大牛直帶,5分鐘內(nèi)即可碰撞想法、調(diào)整方向,免去漫長(zhǎng)審批與溝通干擾;3.高效專注&真正Work&LifeBalance:我們堅(jiān)決拒絕無意義加班,八小時(shí)深度工作,下班后徹底離線,崇尚“專注>內(nèi)卷&&效率>時(shí)長(zhǎng)”,讓你既能高效產(chǎn)出,也能全身心享受生活;4.充足算力保障:只要你需要,我們提供足夠的GPU/TPU計(jì)算資源,訓(xùn)練、微調(diào)、推理全流程無卡頓,讓你的大模型探索與實(shí)驗(yàn)零束縛;5.新模型優(yōu)先:任何一款最新發(fā)布或Preview狀態(tài)的大模型,你都能第一時(shí)間在公司平臺(tái)上試用、測(cè)試與改進(jìn),持續(xù)站在AI前沿?!綩neMoreThing】我們是國(guó)內(nèi)極少數(shù)的進(jìn)行【AI全方面商業(yè)化落地】且同時(shí)【堅(jiān)持長(zhǎng)期主義潛心做研發(fā)】的商業(yè)機(jī)構(gòu),如果你想要了解更多,發(fā)個(gè)私信和我聊一聊吧~【以下的詞能幫助更多的小伙伴找到我們】AI,人工智能,ArtificialIntelligence,機(jī)器學(xué)習(xí),MachineLearning,NeuralNetwork,神經(jīng)網(wǎng)絡(luò),深度學(xué)習(xí),DeepLearning,Transformer,DataMining,數(shù)據(jù)挖掘,自注意力,Self-Attention,注意力機(jī)制,CNN,卷積神經(jīng)網(wǎng)絡(luò),RNN,RecurrentNeuralNetwork,循環(huán)神經(jīng)網(wǎng)絡(luò),LSTM,BERT,GPT,DiffusionModel,擴(kuò)散模型,生成式AI,GenerativeAI,大語言模型,LargeLanguageModel,LLM,圖神經(jīng)網(wǎng)絡(luò),GraphNeuralNetwork,GNN,GCN,圖卷積網(wǎng)絡(luò),GAT,圖注意力網(wǎng)絡(luò),Graph,KnowledgeGraph,知識(shí)圖譜,Ontology,VectorDB,VectorDatabase,向量數(shù)據(jù)庫,Pre-training,預(yù)訓(xùn)練,Post-training,增量預(yù)訓(xùn)練,ContinuePre-training,RAG,Retrieval-AugmentedGeneration,Embedding,嵌入表示,Rerank,ComputerVision,計(jì)算機(jī)視覺,NLP,自然語言處理,ASR,語音識(shí)別,TTS,語音合成,強(qiáng)化學(xué)習(xí),ReinforcementLearning,RLHF,人類反饋強(qiáng)化學(xué)習(xí),FederatedLearning,聯(lián)邦學(xué)習(xí),EdgeAI,PyTorch,TensorFlow,CUDA,GPU,Tensor,張量,Safetensors,Multi-agent,多智能體,Agent,代理,PromptEngineering,提示工程,ChainofThought,思維鏈,Zero-shot,One-shot,Few-shot,In-ContextLearning,Self-supervisedLearning,自監(jiān)督學(xué)習(xí),UnsupervisedLearning,無監(jiān)督學(xué)習(xí),Semi-supervisedLearning,半監(jiān)督學(xué)習(xí),ContrastiveLearning,對(duì)比學(xué)習(xí),VisionTransformer,生成對(duì)抗網(wǎng)絡(luò),GAN,VariationalAutoencoder,變分自動(dòng)編碼器,Autoencoder,自動(dòng)編碼器,DataAugmentation,數(shù)據(jù)增強(qiáng),KnowledgeDistillation,知識(shí)蒸餾,TransferLearning,遷移學(xué)習(xí),ActiveLearning,主動(dòng)學(xué)習(xí),LoRA,參數(shù)高效微調(diào),PEFT,Fine-tuning,微調(diào),PromptTuning,提示微調(diào),StableDiffusion,EdgeComputing,邊緣計(jì)算,因果推斷,Robotics,Tokenization,Hyperparameter,超參數(shù),Overfitting,過擬合,Hallucination,幻覺,Multimodal,多模態(tài),YOLO,SVM,RPA,HuggingFace,LangChain,LlamaIndex,Kubernetes,AGI,Data,數(shù)據(jù),Benchmark,ComputerScience,計(jì)算機(jī)科學(xué),DataScience,數(shù)據(jù)科學(xué),PatternRecognition,模式識(shí)別,Classification,分類,Regression,回歸,Clustering,聚類,DimensionReduction,降維,LossFunction,損失函數(shù),ActivationFunction,激活函數(shù),GradientDescent,梯度下降,Backpropagation,反向傳播,TPU,CPU,顯存,CausalInference,ComputerVision,計(jì)算機(jī)視覺,FeatureEngineering,特征工程,Algorithm,算法,SentimentAnalysis,情感分析,GraphSAGE,PinSAGE,Keras,Scikit-learn,OpenCV,SparkMLlib,Docker,DistributedComputing,分布式計(jì)算,Segmentation,分割,KVCache